تعیین روش بهینه طبقه بندی و نقشه سازی پوشش اراضی با مقایسه الگوریتم های شبکه عصبی مصنوعی وماشین بردار پشتیبان با استفاده از داده های ماهواره ای (مطالعه موردی: تالاب بین المللی هامون)

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجو

2 مدیرگروه طراحی محیط زیست دانشکده محیط زیست دانشگاه تهران

10.22034/jest.2018.14576.2342

چکیده

زمینه و هدف : طبقه بندی تصاویر یکی از تکنیک های مهم درتفسیرتصاویر ماهواره ای است که کاربرد زیادی در بررسی تغییرات زمین دارد. در این میان داده های ماهواره ای به دلیل ارائه اطلاعات به روز، ارزان بودن و تنوع اشکال بهترین وسیله برای آشکارسازی و ارزیابی تغییرات شناخته شده است. از طرفی دیگر در سال های اخیر روش های شبکه های عصبی مصنوعی به طور وسیع و گسترده جهت طبقه بندی داده های ماهواره ای استفاده می شود. هدف از این پژوهش مقایسه سه روش مختلف جهت طبقه بندی پوشش اراضی با استفاده از تصویر سنجده OLI سال 2014 طی یک دوره 26 ساله می باشد.
روش بررسی : در این مقاله تصویر سنجنده OLI (1393) از لحاظ هندسی و اتمسفری در نرم افزار ENVI تصحیح شد. سپس جهت طبقه بندی تصویر به سه روش شبکه های عصبی مصنوعی آرتمپ فازی، شبکه عصبی مصنوعی پرسپترون چند لایه و روش ماشین بردار پشتیبان با استفاده از نرم افزار IDRIS Selva نقشه پوشش اراضی به پنج کلاس آب، پوشش گیاهی، نیزار، اراضی بایر و اراضی شور طبقه بندی گردید. در نهایت به منظور ارزیابی صحت با استفاده از صحت کاربر، صحت تولید کننده، صحت کلی، ضریب کاپا و ماتریس خطا نقشه ایجاد شده با نقشه واقعیت زمینی ایجاد شده توسط GPS و تصاویر گوگل ارث و بازدیدهای صحرایی مورد مقایسه قرار گرفت.
یافته ها ونتایج : نتایج نشان دادند که روش آرتمپ فازی بیشترین میزان دقت را با صحت کل 94.68 و ضریب کاپای91/. نسبت به دو روش روش شبکه عصبی مصنوعی پرسپترون چند لایه با صحت کل 92.99 و ضریب کاپای 89/. و ماشین بردار پشتیبان با صحت کل 90.93و ضریب کاپای 85/. در طبقه بندی داده های ماهوارهای دارد.

کلیدواژه‌ها

موضوعات