مقایسه مدلهای خودهمبسته شبکه عصبی مصنوعی دینامیک و استاتیک در پیش بینی جریان ماهانه ورودی به مخزن سد دز

نوع مقاله: مقاله پژوهشی

نویسندگان

چکیده

در مقاله حاضر قابلیت مدل خود همبسته شبکه عصبی مصنوعی دینامیک برای پیش­بینی جریان ماهانه ورودی مخزن سد دز ارزیابی شده و نتایج  به دست آمده با مدل خودهمبسته شبکه عصبی مصنوعی استاتیک مقایسه شده است. در تحقیقات قبل مقایسه مدل‌های استاتیک و دینامیک در شبکه‌های عصبی مصنوعی صورت نگرفته است. ضمناً تحقیق حاضر از حیث خودهمبستگی مدل شبکه عصبی مصنوعی، دارای نوآوری می‌باشد. در این تحقیق آبدهی های ماهانه بین سال های 1334 تا 1380 استفاده شده است. به طوری که  آمار مربوط به 42 سال اول برای آموزش مدل ها و 5  سال اخیر برای پیش­بینی مدل ها استفاده گردید. ساختار های مختلف برای مدل های شبکه عصبی مصنوعی استاتیک  و دینامیک با مقایسه شاخص  جذر متوسط مربع خطا  بررسی گردید. در ابتدا با استفاده از داده های مهر  1334 تا شهریور  1376 در مرحله آموزش مدل ها بهترین ساختار مدل های شبکه عصبی مصنوعی استاتیک و دینامیک به دست آمد. سپس بر اساس ساختارهای بهینه، جریان ماهانه ورودی به مخزن سد دز پیش­بینی شده و با داده های مشاهده­ای مهر 1376 تا شهریور 1381 مقایسه گردید. در این تحقیق همچنین دونوع تابع فعالیت شعاعی و سیگموئیدی و تعداد نرون‌های مختلف در لایه میانی، بررسی شد. نتایج نشان داد که بهترین مدل در پیش­بینی جریان ورودی به مخزن سد دز،  مدل خود­همبسته شبکه عصبی مصنوعی با تابع فعالیت سیگموئیدی و تعداد 17 نرون در لایه میانی می با شد. مدل ‌های خودهمبسته شبکه عصبی مصنوعی استاتیک  و دینامیک با تابع فعالیت سیگموئیدی جریان ورودی به مخزن سد دز را از 5 سال قبل پیش­بینی می نمایند.

کلیدواژه‌ها