حذف سرب از خاک های آلوده توسط گیاه نی معمولی (Pharagmites australis)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار گروه علوم و مهندسی محیط زیست، دانشکده منابع طبیعی، دانشگاه جیرفت، جیرفت. ایران. *(مسوول مکاتبات

2 دکتری علوم محیط زیست، شرکت مهندسین مشاور افق هسته ای، تهران، ایران.

10.22034/jest.2019.24174.3319

چکیده

زمینه و هدف: دفع فلزات سمی طی فعالیت های انسانی، آلودگی بسیاری از خاک ها را به همراه داشته است. تجمع فلزات کمیاب موجب از بین رفتن حاصل­خیزی خاک و تباهی منابع آب در بسیاری از کشورها گردیده است. در سال های اخیر روش گیاه پالایی با بهره گیری از گونه های گیاهی مختلف از راه حل های با اهمیت در کنترل آلودگی خاک بوده است. 
روش بررسی: در تحقیق حاضر از گیاه نی معمولی ( Pharagmites australis) برای جداسازی فلز سرب از خاک های آلوده در قالب تالاب مصنوعی استفاده شد. آزمایش در قالب طرح کاملا تصادفی به صورت فاکتوریل با دو فاکتور و سه تکرار اجرا گردید. بر این اساس مقدار سرب و سطوح مختلف غلظت سرب که موجب تنش در گیاه می شدند، به دست آمدند.  
یافته ها: نتایج آزمایش در شرایط گل­خانه نشان داد با افزایش غلظت سرب در تیمارهای آزمایشی میزان جذب آن توسط بافت های زیرزمینی و اندام های هوایی گیاه افزایش می یابد هرچند تجمع فلزات در بافت های زیرزمینی معنی دار بوده است و انتقال آن و تجمع در بافت های هوایی گیاه خیلی کم­تر گزارش شده است. نتایج تجزیه رگرسیون نشان داد افزایش غلظت سرب در بافت‌های گیاه نی تالابی تحت تاثیر سطوح تنش این فلز تابع یک منحنی درجه دوم با ضرایب تباین بالای 90% و در سطح آماری 1 درصد معنی‌دار گردید.
بحث و نتیجه گیری: به طور کلی نی تالابی گیاهی نسبتا مقاوم در برابر تنش فلز سنگین سرب، دارای فاکتور انتقال پایین و ظرفیت بالایی برای تجمع این فلز در ریشه خود می‌باشد.

کلیدواژه‌ها


Phytoremediation, Pharagmites Australis, Constructed Wetland, Lead, Soil Contamination.

 

  1. Parnian, A, Charm, M, Jafarzadeh Haghighifard, N, Dinarvand, M, Nickel phytoremediation from hydroponic environment with the help of hornbeam (Ceratophyllum demersum L.). Greenhouse crops  science and technology. Vol. 6, pp. 75-84. 2011. (In Persian)
  2. Research project of the Ministry of Science, Research and Technology, Identification and application of heavy metal overburden plants for the treatment of contaminated soils in the Alborz industrial zone. University of Tehran. 2014. (In Persian)
  3. Lasat, M.M, Phytoextraction of toxic metals – A review of biological mechanisms. Journal of Environmental Qual. Vol. 31(109), pp. 120. 2002.
  4. Sarmadi, M, Irani, M, Bernard, F, Study of Cadmium Tolerance and Accumulation in Licorice Seedlings. Environmental Sciences. Vol. 3, pp. 69-80. 2011. (In Persian)
  5. Adriano, D.C, Trace Elements in Terrestrial Environments; Biochemistry, Bioavailability and Risks of Metals. Springer-Verlag. New York. 2001.      
  6. Mozaffari, A, Habibi, D, Maleki, A, Babaei, F, Evaluation of the potential of several crops in reducing soil contamination with the heavy metal cadmium. Journal of Agriculture and Plant Breeding. Vol. 8 (3), pp.  1-14. 2012. (In Persian).
  7. Mohammadi, S, Study of the possibility of soil contamination of cucumber production greenhouses with toxic metals and the health risk of its products in Jiroft region, M.Sc. Thesis in Agricultural Engineering - Agroecology, Jiroft University. 2015. (In Persian)
  8. Fatehi, M, Effect of natural zeolite in soils contaminated with toxic metals on phytoremediation of Cynodon Dactylon, M.Sc. Thesis in Agricultural Engineering - Soil Science, Jiroft University. 2015. (In Persian)
  9. Majer, B.J, Tscherko, D, Paschke, A, Effects of heavy metal contamination of soils on micronucleus induction in Tradescantia and on microbial enzyme activities: a comparative investigation. Mutation Research, Vol. 515, pp. 111-124. 2002.
  10. Reeres, R. D., Baker, A. J. M, Metal-accunulatingplant. In phytorememediation of toxic metals: Using plants to clean up the environment, 1999.
  11. Garbisu, C, Alkorta, I, Phytoextraction: acosteffective plant based technology for the removal of metals from the environment. Bioresource Technology, Vol. 779, pp. 229- 236. 2001,
  12. Liu, J.G, Li, K.Q, Xu, J.K, Zhang, Z.J, Ma, T.B, Lu, X.L, Yang, J.H, Zhu, Q.S, Lead toxicity, uptake, and translocation in different rice cultivars. Plant Science, Vol. 165, pp. 793-802. 2003.
  13. WHO, Health and environment in sustainable development. WHO. Geneva. 1997.
  14. Kirkham, M.B, Cadmium in plants on polluted soils: Effects of soil factors, hyperaccumulation, and amendments. Vol. 137, pp. 19-32. 2006.
  15. Karimi, N, Effect of different concentrations of lead on some physiological parameters of artichoke plant. Journal of Plant Production Research. Vol. 20 (1). pp. 49-62. 2013. (In Persian)
  16. Lopez-Martinez, S, Gallegos-Martinez, M. E, Perez-Flores,. L. J, Gutierrez-Rojas: Contaminated soil phytoremediation by Cyperu laxus Lam. cytochrome P450 Erod-activity induced by hydrocarbonsin roots. International Journal of Phytoremediation. Vol. 10, pp. 289-301. 2008.
  17. Khatib, M, Rashid Mohassel, M, Ganjali, A, Lahout, M, The effect of different concentrations of nickel on the morphophysiological properties of parsley (Petroselinum crispum). Iranian Journal of Crop Research. Vol. 2. pp. 295-302. 2008. (In Persian)
  18. Jahan Nejati, S, Study of the effect of heavy metal stress on Aviarslam plant and determination of its phytoremediation capability in laboratory and greenhouse conditions, M.Sc. Thesis in Agricultural Engineering - Agroecology, Jiroft University. 2015. (In Persian)
  19. Lindsay, W.L, Norvell, W. A, Development of a DTPA soil test for zinc, iron, manganese and copper. Soil Science and Society of American Journal. Vol. 42, pp. 421-428. 1978.
  20. Alizadeh, M, Fathi, F, Torabian, A, Investigation of the accumulation of heavy metals in forage plants irrigated with wastewater in the south of Tehran Case study: Maize and alfalfa. Journal of Environmental Science. Vol. 34, pp. 137-148. 2008. (In Persian)
  21. Zacchini, M, Pietrini, F, Mugnozza, G, lori, V, Metal tolerance, accumulation and translocation in poplar and willow clones treated with cadmium in hydroponics. Water Air Soil Pollution. Vol. 197, pp. 23-34. 2008.
  22. Giuseppe, B, Comparative performance of trace element bioaccumulation and biomonitoring in the plant species Typha domingensis, Phragmites australis and Arundo donax, Ecotoxicology and Environmental Safety. Vol. 97, pp. 124–130. 2013.
  23. Sharafi, M, Ranjbarfardavi, A, Beigi Herchegani, H, Iranipour, R, The effect of soil cobalt on some indicators of bean growth. Journal of Soil Research (Soil and Water Sciences). Vol. 27 (1), pp. 86-96. 2013. (In Persian)
  24. Jayakumar, K, Jaleel, A.C, Azooz, M, Vijayarengan, P, Gomathinayam, M, Panneerselvam, R, Effect of different concentrations of cobalt on morphological parameters and yield components of soybean. Global Journal of Mole Science. Vol. 4, pp. 10-14. 2009.
  25. Zarrin Kemar, F, Saderi, S.Z, Zeinali, H, Study of lead uptake and accumulation in different stages of growth and development of German chamomile. Plant Biology. Vol. 9, pp. 53-62. 2011. (In Persian)